Approximating the Pareto Set: Concepts, Diversity Issues, and Performance Assessment
نویسندگان
چکیده
This paper adresses the problem of diversity in multiobjective evolutionary algorithms and its implications for the quality of the approximated set of efficient solutions (Pareto set). Current approaches for maintaining diversity are classified and related to the overall fitness assignment strategy. The resulting groups of complex selection operators are presented and tested on different objective functions exhibiting different levels of difficulty. For the assessment of the algorithmic performance a quality measure based on the notion of dominance is applied that reflects gain of information produced by the algorithm. This allows an on-line and time-dependent evaluation in order to characterize the dynamic behavior of an algorithm.
منابع مشابه
Pareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm
Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...
متن کاملDYNAMIC PERFORMANCE OPTIMIZATION OF TRUSS STRUCTURES BASED ON AN IMPROVED MULTI-OBJECTIVE GROUP SEARCH OPTIMIZER
This paper presents an improved multi-objective group search optimizer (IMGSO) that is based on Pareto theory that is designed to handle multi-objective optimization problems. The optimizer includes improvements in three areas: the transition-feasible region is used to address constraints, the Dealer’s Principle is used to construct the non-dominated set, and the producer is updated using a tab...
متن کاملApproximating Pareto-Optimal Sets Using Diversity Strategies in Evolutionary Multi-Objective Optimization
Often the Pareto front of a multi-objective optimization problem grows exponentially with the problem size. In this case, it is not possible to compute the whole Pareto front efficiently and one is interested in good approximations. We consider how evolutionary algorithms can achieve such approximations by using different diversity mechanisms. We discuss some well-known approaches such as the d...
متن کاملMORRF*: Sampling-Based Multi-Objective Motion Planning
Many robotic tasks require solutions that maximize multiple performance objectives. For example, in path-planning, these objectives often include finding short paths that avoid risk and maximize the information obtained by the robot. Although there exist many algorithms for multi-objective optimization, few of these algorithms apply directly to robotic path-planning and fewer still are capable ...
متن کاملSolving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
متن کامل